Regulation of Protein Quality Control by UBE4B and LSD1 through p53-Mediated Transcription
نویسندگان
چکیده
Protein quality control is essential for clearing misfolded and aggregated proteins from the cell, and its failure is associated with many neurodegenerative disorders. Here, we identify two genes, ufd-2 and spr-5, that when inactivated, synergistically and robustly suppress neurotoxicity associated with misfolded proteins in Caenorhabditis elegans. Loss of human orthologs ubiquitination factor E4 B (UBE4B) and lysine-specific demethylase 1 (LSD1), respectively encoding a ubiquitin ligase and a lysine-specific demethylase, promotes the clearance of misfolded proteins in mammalian cells by activating both proteasomal and autophagic degradation machineries. An unbiased search in this pathway reveals a downstream effector as the transcription factor p53, a shared substrate of UBE4B and LSD1 that functions as a key regulator of protein quality control to protect against proteotoxicity. These studies identify a new protein quality control pathway via regulation of transcription factors and point to the augmentation of protein quality control as a wide-spectrum antiproteotoxicity strategy.
منابع مشابه
The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملAndrogen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence.
Prostate cancer biology varies from locally confined tumors with low risk for relapse to tumors with high risk for progression even after radical prostatectomy. Currently, there are no reliable biomarkers to predict tumor relapse and poor clinical outcome. In this study, we correlated expression patterns of the androgen receptor (AR) coactivators lysine-specific histone demethylase 1 (LSD1) and...
متن کاملThe lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners.
The lysine-specific demethylase 1 (LSD1), a component of several histone deacetylase complexes, plays an important role in chromatin remodeling and transcriptional regulation. Here, we generated multiple cell lines in which LSD1 is inducibly expressed or knocked down and found that LSD1 is required for cell proliferation. In addition, we found that deficiency in LSD1 leads to a partial cell cyc...
متن کاملPomalidomide and Lenalidomide Induce p21 Expression in Both Lymphoma and Multiple Myeloma through a LSD1-Mediated Epigenetic Mechanism
Lenalidomide and pomalidomide have both been evaluated clinically for their properties as anticancer agents, with lenalidomide being available commercially. We previously reported that both compounds cause cell cycle arrest in Burkitt’s lymphoma and multiple myeloma cell lines by increasing the level of p21 expression. In the present study, we unravel the molecular mechanism responsible for p21...
متن کاملCell cycle association of the retinoblastoma protein Rb and the histone demethylase LSD1 with the Epstein-Barr virus latency promoter Cp.
The Epstein-Barr virus C promoter (Cp) regulates the major multicistronic transcript encoding the EBNA-LP, 1, 2, and 3 genes required for B-cell proliferation during latency. The growth-transforming potential of these viral genes suggests that they must be tightly regulated with the host cell cycle and differentiation process. To better understand Cp regulation, we used DNA affinity purificatio...
متن کامل